

VOLUMES BY CYLINDRICAL SHELLS CALCULUS

STEM SC

Method of Cylindrical Shells is used when it becomes complicated to compute inner and outer radii of a washer. For example in Figure 1, we must solve for *x* in terms of *y*.

 $V = 2\pi r h \Delta r$

Now let S be the solid obtained by rotating about y-axis the region bounded by y = f(x) where $f(x) \ge 0, y = 0, x = a$, and x = b, where $b > a \ge 0$. y = f(x) f(x) =

To obtain this volume, we divide the interval [a, b] into n subintervals $[x_{i-1}, x_i]$ of equal width Δx and let $\overline{x_i}$ be the midpoint of the *i*-th subinterval.

$$V = \int_a^b 2\pi x f(x) dx \qquad \text{where } 0 \le a < b$$

٢ ^k)		
	$(2\pi x)$	[f(x)]	dx
Ja	circumference	height	thickness

Observe that x represents the radius of each cylinder when we rotate the region under a curve about the y-axis. If we revolve about the x-axis, then the radius is y.

Example 1 Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$

Solution:

The shell has radius x, circumference $2\pi x$, and the height $x - x^2$. So, the volume is

$$V = \int_0^1 (2\pi x)(x - x^2) dx = 2\pi \int_0^1 (x^2 - x^3) dx = 2\pi \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{\pi}{6}$$

radius 2 - x, circumference $2\pi(2 - x)$, and height $x - x^2$.

The volume of the given solid is

$$V = \int_0^1 2\pi (2-x)(x-x^2) \, dx = 2\pi \int_0^1 (x^3 - 3x^2 + 2x) \, dx = 2\pi \left[\frac{x^4}{4} - x^3 + x^2 \right]_0^1 = \frac{\pi}{2}$$