Method of Cylindrical Shells is used when it becomes complicated to compute inner and outer radii of a washer. For example in Figure 1, we must solve for x in terms of y.

Figure 1
Figure 2 shows one cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h.

Figure 2

Its volume V is calculated as follows $V=V_{2}-V_{1}$, where V_{1} is a volume of the cylinder with inner radius r_{1} and V_{2} is a volume of the cylinder with outer radius r_{2}. Remember that the volume of a cylinder is $V=\pi r^{2} h$. So, we have the following formula for the volume of one cylinder

$$
V=\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi\left(r_{2}^{2}-r_{1}^{2}\right) h=\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h
$$

Observe that $r=\frac{r_{2}+r_{1}}{2}$. So by multiplying and dividing the previous equation by 2 we get $V=2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right)$

$$
V=2 \pi r h \Delta r
$$

Now let S be the solid obtained by rotating about y -axis the region bounded by $y=f(x)$ where $f(x) \geq 0, y=0, x=a$, and $x=b$, where $b>a \geq 0$.

Figure 3

To obtain this volume, we divide the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ of equal width Δx and let \bar{x}_{l} be the midpoint of the i-th subinterval.

-

Figure 4

Then the volume of the solid in Figure 3, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to b, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } 0 \leq a<b
$$

Figure 5
In Figure 5, we cut and flattened a typical cylindrical shell. So we have

$$
\int_{a}^{b} \begin{array}{ccc}
(2 \pi x) & {[f(x)]} & d x \\
\text { circumference } & \text { height } & \text { thickness }
\end{array}
$$

Observe that \boldsymbol{x} represents the radius of each cylinder when we rotate the region under a curve about the y-axis. If we revolve about the x-axis, then the radius is \boldsymbol{y}.

Example 1 Find the volume of the solid obtained by rotating about the y -axis the region between $y=x$ and $y=x^{2}$

Figure 6

Solution:

The shell has radius \boldsymbol{x}, circumference $2 \pi x$, and the height $\boldsymbol{x}-\boldsymbol{x}^{2}$. So, the volume is

$$
V=\int_{0}^{1}(2 \pi x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x=2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right] \begin{aligned}
& 1 \\
& 0
\end{aligned}=\frac{\pi}{6}
$$

Example 2 Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.

Figure 7

Solution:

Figure 7 shows the region and cylindrical shell formed by rotation about the line $x=2$. It has radius $2-x$, circumference $2 \pi(2-x)$, and height $x-x^{2}$.

The volume of the given solid is

$$
V=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x=2 \pi\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right] \frac{\pi}{1}=\frac{\pi}{2}
$$

